

Lesson
1

1

building requires knowledge of civil, architectural and other engineering
principles.

Without using software engineer

It is believed that the only satisfactory solution to the present software crisis can
possibly come from a spread of software engineering practices among the
engineers, coupled with further advancements to the software engineering
discipline itself.

Program vs. software product
Programs are developed by individuals for their personal use. They are therefore,
small in size and have limit rthepressole1(edvabufto thTj
-0.002 Tc 0.002 T97-25.085 1.15 Td
(smalo advahhav,size)]seso)Tadware productrthemost1(edve deveno benvolvith fu)T

Module
1

Introduction to Software
Engineering

Exploratory style vs. modern style of software development.
An important difference is that the exploratory software development style is
based on error correction while the software engineering principles are primarily
based on error prevention. Inherent in the software engineering principles is the
realization that it is much

For example, a program of size 1,000 lines of code has some
complexity. But a program with 10,000 LOC is not 10 times more difficult
to develop, but may be 100 times more difficult unless software
engineering principles are used. Software engineering helps to reduce
the programming complexity.

2. Identify the two important technique

Fig. 1.5: Decomposition of a large problem into a set of smaller
problems.

In other words, a good decomposition as shown in fig.1.5 should
minimize interactions among various components.

Organizations are spending larger and larger portions of their budget on
software. Not only are the software products turning out to be more

• People wanted more sophisticated things to be done by software and as
a result the size and complexity of programs increased. Exploratory style
proved to be insufficient for developing large and complex programs.

Module
2

Software Life Cycle
Model

Version 2 CSE IIT, Kharagpur

Lesson
3

Basics of Software Life
Cycle and Waterfall

Model

Feasibility Study

Requirements Analysis
& S

handling communication with the mine sites. He arrived at a cost to
develop from the analysis. He found that the solution involving
maintenance of local dat

• Activities undertaken during design: -

The goal of the design phase is to transform the requirements

ts

a set of previously planned modules are added to it. Finally, when all the

Module
2

Software Life Cycle
Model

Version 2 CSE IIT, Kharagpur

A prototyping model

- First quadrant (Objective Setting)

•

Circumstances to use spiral model

The spiral model is called a meta model since it encompasses all other life cycle
models. Risk handling is inherently built into this model. The spiral model is
suitable for development of technically challenging software products that are
prone to several kinds of risks. However, this model is much more complex than
the other models – this is probably a factor deterring its use in ordinary projects.

Comparison of different life-cycle models

resentment. On the other hand, an evolutionary approach lets the customer
experiment with a working product much earlier than the monolithic approaches.
Another important advantage of the incremental model is that it reduces the
customer’s trauma of getting used to an entirely new system. The gradual
introduction of the product via incremental phases provides time to the customer
to adjust to the new product. Also, from the customer’s financial viewpoint,

A software life cycle model defines entry and exit criteria for every
phase. A phase can start only if its phase-entry criteria have been
satisfied. So without software life cycle model the entry and exit criteria
for a phase cannot be recognized. Without software life cycle models
(such as classical waterfall model, iterative waterfall model, prototyping
model, evolutionary model, spiral model etc.) it becomes difficult for
software project managers to monitor the progress of the project.

3. Identify six different phases of a classical waterfall model.

Ans.: - The classical waterfall model is intuitively the most obvious way to

4. Identify two basic roles of a system analyst.

Ans.:- For performing requirements analysis acti

8. Identify why different modules making up a software product are almost

Ans.: - There are several uses of a protot

• First quadrant (Objective Setting)

Á During the first quadrant, it is needed to identify the objectives of
the phase.

Á Examine the risks associated with these objectives.

• � x

2.

Specific Instructional Objectives
At the end of this lesson the student will be able to:

requirements, he resolves them by carrying out further di

Fig. 3.3: Book Function

So the function Search Book (F1) takes the author's name and transforms it into
book details.

Functional requirements actually describe a set of high-level requirements, where
each high-level requirement takes some data from the user and provides some

Á Verifiable.

Decision tree representation of the above example -

The following tree (fig. 3.4) shows the graphical representation of the above
example. After getting info

Conditions
Valid selection No Yes Yes Yes
New member - Yes No No

Lesson
6

Formal Requirements
Specification

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives

Semantic Domains

constrained by an empty buffer. Examples of property-oriented
specification styles are axiomatic specification and algebraic specification.

In a model-oriented approach, we start by defining the basic operations, p
(produce) and c (consume). Then we can state that S1 + p ĺ S, S + c ĺ S1.

specifications is related to rapid pr

3.

such as the maintainability of the system, portability of the system,
usability of the system, etc. The goals of implementation part documents
some general suggestions regard

Ans.: - Some problems that might be created by an unstructured specification

are as follows:

Á It would be very much difficult to understand that document.

 Á

executable specifications is related to rapid prototyping. Informally,

ED

D D D

Types section:-

Syntax:

1. create : integer u integer →

Á Incremental specification. The idea behind incremental
specification is to first develop the specifications of the simple types
and then specify more complex types by using the specifications of
the simple types.

Á Specification instantiation.

For the following, mark all options which are true.

2. The edges of decision tree represent corresponding actions to be
performed according to conditions.

Ans.: - False.

Explanation: - The edges of decision tree represent conditions and the
leaf nodes represent the corresponding actions to be performed.

3. The upper rows of the decision table specify the corresponding actions to

be taken when an evaluation test is satisfied.

7. Homogeneous algebra is a collection of different sets on which several
operations are defined.

Ans.: - False.

Module
4

Software Design Issues
Version 2 CSE IIT, Kharagpur

Lesson
8

Basic Concepts in
Software Design

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Identify the software design activities.
• Identify the items to be designed dur

•
• Identify thimportadenititemdevelur•

Module
4

Software Design Issues
Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this less

system (TPS), the get-input, print-error, and summarize-members
functions are grouped into one module. The grouping does not have any
relevance to the structure of the problem.

Logical cohesion: A module is said to be logically cohesive, if all
elements of the module perform similar operations, e.g. error handling,
data input, data output, etc. An example of logical cohesion is the case
where a set of print functions generating different output reports are
arranged into a single module.

The interface complexity is basically determined by the number of types of
parameters that are inte

Need for functional independence

• create-new-member
• delete-member
• update-member-record

Object-oriented design

In the object-oriented design approach, the system is viewed as collection of
objects (i.e. entities). The state is decentralized among the objects and each
object manages its own state information. For example, in a Library Automation
Software, each library member may be a separate object with its own data and
functions to operate on these data. In fact, the functions defined for one object

Object-Oriented Approach:

5. Identify at least three reasons in favor of why functional independence is
the key factor for a good software design.

Ans.: - Functional independence is a key to any good design primarily due to the
following reason:

• Error isolation: Functional independence reduces error propagation. The
reason behind this is that if a module is functionally independent, its
degree of interaction with the other modules is less. Therefore, any error
existing in a module would not directly effect the other modules.

• Scope of reuse: Reuse of a module becomes possible. Because each

library member which essentially creates the record for a new member,
assigns a unique membership number to

address, etc. but by designing objects such as employees, departments,
etc.

Function-Oriented Approach:

/* Global data (system state) accessible by various
functions */

4. The degree of coupling between two modules does not depend on their
interface complexity.

Ans.: - False.

Explanation: - The degree of coupling between two modules depends on
their interface complexity. The interface complexity is basically determined
by the types of parameters that are interchanged while invoking the
functions of the module.

5. In the function-oriented design approach, the system state is decentralized

and not shared among different functions.

Ans.: - False.

Explanation: - In the function-oriented designed approach, the system
state is centralized and shared among different functions. On the other
hand, in the object-oriented design approach, the system state is
decentralized among the objects and each object manages its own state
information.

6. The essence of any gooci-c 1m

Module
5

Function-Oriented
Software Design

Lesson
10

Data Flow Diagrams
(DFDs)

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student will be able to:

hierarchically represents various sub-functions. In fact, any hierarchical model is
simple to understand. Human mind is such that it can easily understand any
hierarchical model of a system – because in a hierarchical model, starting with a
very simple and abstract model of a system, different details of the system are
slowly introduced through different hierarchies. The data flow diagramming
technique also follows a very simple set of intuitive concepts and rules. DFD is
an elegant modeling technique that turns out to be useful not only to represent
the results of structured analysis of a software problem, but

Example 1: Tic-Tac-Toe Computer Game

Tic-tac-toe is a computer game in which a human player and the computer
make alternative moves on a 3³3 square. A move consists of marking

It may be recalled that the DFD model of a system typically consists of
several DFDs: level 0, level 1, etc. However, a single data dictionary
should capture all the data appearing in all the DFDs constituting the

Module
5

Function-Oriented
Software Design

input data to these functions and the data output by these functions and
represent them appropriately in the diagram.

If a system has more than 7 high-level functional requirements, then some of the
related requirements have to be combined and represented in

The context diagram for this problem is show
 Ts 100

Data dictionary for a DFD model

Every DFD model of a system must be accompanied by a data dictionary

• If any of the ordered items are not available in the inventory in
sufficient quantity to satisfy the order, then these out-of-stock items
along with the quantity ordered by the customer and the CIN are stored
in a “pending-order” file for the further processing to be carried out
when the purchase department issues the “generate indent” command.

• The purchase department should be allowed to periodicallyT*
(whae1j
-0.00273Tc 0.012 1Tw -14.935 -1dent�s
(al(the �rrie23generas. W)-2(ored)]Tj
-015TJ
58 Tw 0.4 Tw a cCIN o 0 (nt�
(al(the “generast)-2(ored)]9be)]TJ831Tc 0.05TJ
58 -14.935 -1isiodicad,)-8(T*
(syste)5(m)-3(epartmenexam out)-7()Tj
-0.0382Tj
0.0022 Tw 19.1ine 75 0 Td
in a “pending-ord224(allyT*
(whae1j
-0.00473Tc 0.00022 T -14.935 (determine 75 03pends
(hatd thein a lyT*
(whae4j
-0.0049]TJ
0.5.8558 Tw 0.4 pr�
determine 75 0totalh t)-7(herdere)-2(ored)]Tj
-0ed 974Tc 0.05T8558 -14.935 -1requi-5(t fi)each16(If anof-st. Idepartmenfgene caIf anaddrthemeno 0 (fre so sati-2(ored)]1j
-0.00223TJ
0.00[(in dods
whuanupperiong witsanof-strderebynex out)-7()Tj
-0.0022Tj
0.000358 Tw 0.4aminr pr a rd224cCIN o 1(ntainr prvCIN n dodti-2(ored)]5j
-0.00037Tc 0.00003 T -14.935 (det0 Ts customenepartmenpri de cartory in)T0022Tj
0.4.188 Tw 0.46derenerast(aler, thin dods.ti-2(oand.)Tj
ET
EMC
/P2<</MCID 1 >>BDC
BT
/C2_0
0 Tc 0 Tw 12 0 540.8426 638.2801 Tm
<0078>Tj
/TT0 1 4j
-0.0318 Tc 0.3478 Tw 0.46 0 44
[()systemepartmenalso cutrderwershould be)]TJ10 Tc 0.6.91Tw 19.1t�adwotalhadwhemregardher phicallyT*
(wh4]Tj
-0ed 674Tc 0.0572 Tw -17.43 -tantiticsch16diffuanse d-of-ssortmovent iss90382Tj
5.4022 Tw 191(he y githi(allowech16(imehe customent issues)Tj-
5.4022Tw -14.935 -1rddrpoin a alh t)-7(herdesortme customenpcemrealizedds.ti-2(oand.)Tj
ET
EMC
3P2<</MCID 1
<0078>Tj/C2_0 1 Tf
0 Tc 0 Tw90 499.508426 6(24 command.)Tj
ET
EMC
4P2<</MCID 1
<0078>Tj(ored)]1j
-0100223TJ
0 Tc 0 Tw90 485.708426 6(4
[(context6diagram224 fi)7(tran a aepasatisfy th3]1j
-01009)]TJ
0.7422 Tw 191 aut)-antonthe Td
misiemepwne inventmmand.)TSpan
ET
EMC
5P2<</MCID 1
<0078>Tj/y t15C2_0 1 Tf
0 Tc 0 Tw505.92 485.726 6(fig224 command.)505.92 483.54c 0.0.18.9mre
f)TSpan
ET
EMC
6P2<</MCID 1
<0078>Tj/y t)]5j

0 Tc 0 Tw90 471.9m6 6(.054 command.)90 469.74c 0.6.18.9mre
f)Tj
ET
EMC
7P2<</MCID 1
<0078>Tj(ored1]5j
-0.002C2_0
0 Tc 0 Tw 00.6.1471.9m6 6(,me customlevel078DFDe inventmmand.)TSpan
ET
EMC
8P2<</MCID 1
<0078>Tj/y t 6]5j
-0.016C2_0
0 Tc 0 Tw23.05.1471.9m6 6(fig225.9ventmmand.)23.05.1469.74c30.0618.9mre
f)Tj
ET
EMC
9P2<</MCID 1
<0078>Tj/y t22C2_0 1 Tf
0 Tc 0 Tw271.441471.9m6 6(. 24 command.)Tj
ET
EMC
/0P2<</MCID 1
<0078>Tj/C2_0
0 Tc 0 Tw90 458.426 6(24 command.)TInlrmiShape
ET
EMC
//P <</MCIq
151.5 455.4 34.004 -216Cre
W* nIq
320.36.0040 Tc 089.6999817j
58.3399811 356.76.04h3]cm)TIm0 Do
bhe 0.03399640 Tc258.33963 2825859954811 225876. t13]cm)T1m0 Do
bhe671.0-0.000 Tc .55990ed 28 .503356811 4
5.76.3913]cm)T2m0 Do
bhe7.9.6990.347Tc258.33963 280.03395.00352 0.-0.7113]cm)T3m0 Do
bhe9.55990ed 47Tc3.1133951 280.013358 w>Tj/C2_03,13]cm)T4m0 Do
bh8 .1133951 0 Tc 40.033933 2e9.2033597 3334..7613413]cm)T5m0 Do
bh303.413381000 Tc 45803353617j
58.3399812Tj/3.0-57413]cm)T6m0 Do
bh62589.693000 Tc0.00339.03397.03398.00249.9/y t4913]cm)T7m0 Do
mand.)Tj
ET
EMC
/P2<</MQMCID 1 1<0078>13258 0 Tc 3258 0.00.299 Tw9.4.508426 6(24 command.)Tj
ET
EMC1
3P2<</MCID 1 1<0078>d 47Tc6 30.0233.88508426 6(24 command.)Tj
ET
EMC14
3P2<</MCID 1 1<0078>k items

Fig. 5.9: Level 1 DFD for TAS

data that flows between bubbles A and B or bubbles A and C
and not the conditions depending on which the two modules are
invoked.

• A data store should be connected only to bubbles through data arrows.
A data store cannot be connected to another data store or to an
external entity.

• All the functionalities of the system must be captured by the DFD
model. No function of the system specified in its SRS document should
be overlooked.

• Only those functions of the system specified in the SRS document
should be represented, i.e. the designer should not assume
functionality of the system not specified by the SRS document and
then try to represent them in the DFD.

• Improper or unsatisfactory data dictionary.
• The data and function names must be intuitive. Some students and

even practicing engineers use symbolic data names such a, b, c, etc.
Such names hinder understanding the DFD model.

Shortcomings of a DFD model

DFD models suffer from several shortcomings. The important shortcomings of
the DFD models are the following:

• DFDs leave ample scope to be imprecise. In the DFD model, the

function performed by a bubble is

• The data flow diagramming technique does not provide any specific
guidance as to how exactly to decompose a given function into its sub-

Module
5

Function-Oriented
Software Design

Lesson
12

Structured Design

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Identify the aim of structured design.
•

• Data flow arrows: Arrows are annotated with data name; named data
passes from one module to another module in the direction of the
arrow.

• Library modules: Represented by a rectangle with double edges.

• Selection:

branches. These are drawn below a root module, which would invoke these
modules.

Identifying the highest level input and output transforms requires experience and

 During structured analysis, the major processing tasks (functions) of the
system are analyzed, and the data flow among those processing tasks is
represented graphically. Stru

•  䵡 湹 ⁢ 敧 楮 湥 牳 ⁣ 潭 洀 楴 ⁴ 桥 ⁭ 楳 琀 慫 攠 潦 ⁤ 牡 睩 湧 ⁭ 潲 攀 ⁴ 桡 渠 潮 攠 扵 扢 汥   楮 ⁴ 桥 ⁣ 潮 瑥 硴 ⁤ 楡 杲 慭 ⸠ 䄠

functionality of the system not specified by the SRS document and
then try to represent them in the DFD.

• Sequential ordering of tasks inherent in a flow chart is suppressed in a
structure chart.

For the following, mark all options which are true.

1. The purpose of structured analysis is

� to capture the detailed structure of the system as perceived by the
user ¥

� to define the structure of t

7. The bubbles in a level 1 DFD represent

� exactly one high-level functional requirement described in SRS
document

� more than one high-level functional requirement
�

� neither transform nor transaction analysis

13. During structured design, if all the data flow into the diagram are
processed in similar ways i.e. if all the input data are in

Explanation: -

Ans.: - True.

Explanation: - It can be considered the different modules of a structure
chart to be arranged in layers or levels. The principle of abstraction does
not allow lower-level modules to be aware of the existence of the high-

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Identify the aim of structured design.
•

• Data flow arrows: Arrows are annotated with data name; named data
passes from one module to another module in the direction of the
arrow.

• Library modules: Represented by a rectangle with double edges.

• Selection:

branches. These are drawn below a root module, which would invoke these
modules.

Identifying the highest level input and output transforms requires experience and

•  䵡 湹 ⁢ 敧 楮 湥 牳 ⁣ 潭 洀 楴 ⁴ 桥 ⁭ 楳 琀 慫 攠 潦 ⁤ 牡 睩 湧 ⁭ 潲 攀 ⁴ 桡 渠 潮 攠 扵 扢 汥   楮 ⁴ 桥 ⁣ 潮 瑥 硴 ⁤ 楡 杲 慭 ⸠ 䄠

functionality of the system not specified by the SRS document and
then try to represent them in the DFD.

• Sequential ordering of tasks inherent in a flow chart is suppressed in a
structure chart.

For the following, mark all options which are true.

1. The purpose of structured analysis is

� to capture the detailed structure of the system as perceived by the
user ¥

� to define the structure of t

7. The bubbles in a level 1 DFD represent

� exactly one high-level functional requirement described in SRS
document

� more than one high-level functional requirement
�

Explanation: - A data dictionary lists the purpos

Ans.: - True.

Explanation: - It can be considered the different modules of a structure
chart to be arranged in layers or levels. The principle of abstraction does
not allow lower-level modules to be aware of the existence of the high-

Lesson
14

Basic Ideas on UML

Version 2 CSE IIT, Kharagpur

Unified Modeling Language (UML)

UML, as the name implies, is a modeling language. It may be used to visualize,
specify, construct, and document the artifacts of a software system. It provides a

UML diagrams
UML can be used to construct nine different

views are expected to conform to this view

Module
7

Lesson
15

Use Case Model

Version 2 CSE IIT, Kharagpur

Fig. 7.2:

Use case model for tic-tac-toe game

environment conditions, qualitative statements, response time
requirements, etc.

Text description

U1: register-customer: Using this use case, the customer can register

make the corresponding interaction

Includes
The includes relationship in the older versions of UML (prior to UML 1.1)
was known as the uses relationship. The includes relationship involves
one use case including the behavior

Extends
The main idea behind the extends rela

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Explain the features represented by a class diagram.
• Explain the relationships among diffe

Inheritance vs. Aggregation/Composition

•

Module
7

Lesson
17

Activity and State
Chart Diagram

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives

An FSM consists of a finite number of states corresponding to those of the object
being modeled. The object undergoes state changes when specific events occur.
The FSM formalism existed long before the object-oriented technology and has
been used for a wide variety of applications. Apart from modeling, it has even
been used in theoretical computer science as a generator for regular languages.

A major disadvantage of the FSM formalism is the state explosion problem. The
number of states becomes

A nogy ans thm mod is

Fig. 7.16: State chart diagram for an order object

Activity diagram vs. State chart diagram

• Both activity and state chart diagrams model the dynamic behavior of

• Behavioral view

• Implementation view

• Environmental view

User’s view: This view defines the functionalities (facilities) made available by
the system to its users. The

exceeds the amount balance. The variations are also called alternative paths. A
use case can be viewed as a set of related scenarios tied together by a common

http://localhost/raj/oc00029/umlsolvedans.php?#a11

Ans.: -
1)

1

8. What is the necessity for developing use case diagram?

Ans.: - From use case diagram, it is obvious

11. What does the association relationship among classes represent? Give

http://localhost/raj/oc00029/umlsolvedans.php?#a7
http://localhost/raj/oc00029/umlsolvedans.php?#a7
http://localhost/raj/oc00029/umlsolvedans.php?#a8
http://localhost/raj/oc00029/umlsolvedans.php?#a8

 A document may consist of several paragraphs and each paragraph
consists of many lines. Aggregation is represented by the diamond symbol (as
shown in the fig. 7.10) at the composite end of a relationship.

13. Why are objects always passed by reference in all popular

http://localhost/raj/oc00029/umlsolvedans.php?#a10
http://localhost/raj/oc00029/umlsolvedans.php?#a10

those above reasons the aggregation relationshi

2. Which of the following view captured by UML diagrams can be considered as

designs. The pattern solutions are typically described in terms of class and
interaction diagrams. Examples of design patterns are expert pattern, creator
pattern, controller pattern etc.

Explain what design patterns are.

Explain controller pattern and circumstances when it can be
used.

Controller Pattern:
Problem:

Specific Instructional Objectives
At the end of this lesson the student will be able to:

Explain the purpose of different types of objects identified

In such cases, one controller object mi

Booch’s Object Identification Method

description. Useful abstractions usually result from clever factoring of the
problem description into independent and intuitively correct elements.

Example: Tic-tac-toe

Let us identify the entity objects of the following Tic-tac-toe software:

Tic-tac-toe is a computer game in which a human player and the computer make
alternative moves on a 3 X 3 square. A move consists of marking a previously

Explain the CRC cards technique.

Develop sequence diagram for any given use case.

Consider the Tic-tac-toe computer game discussed earlier. The step-by-step

Fig. 8.5: Sequence diagram for the play move use case

Identify how sequence diagrams are useful in developing the
class diagram.

Consider the Supermarket prizes scheme software discussed earlier. The step-
by-step analysis and design workout of this problem is as follows:

• Sequence diagram for the select winner list use case is shown in fig.
8.8.

• Sequence diagram for the register customer use case is shown in fig.
8.9.

• Sequence diagram for the register sales use case is shown in fig.
8.10. In this use case, since the responsibility of the

Fig. 8.9:

Fig. 8.10: Sequence diagram for the register sales use case

Fig. 8.11: Refined sequence diagram for the register sales use case

Version 2 CSE IIT, Kharagpur

the individual method is desirable, since it assumes that each method
does only a well-defined function.

Cohesiveness of the data and methods within a class. This is
desirable since it assures that the methods of an object do actions for
which the object is naturally responsible, i.e. it assures that no action

The following questions have been designed to test the
objectives identified for this module:

1. Write down basic differences between object-oriented analysis (OOA)

4. Write down some popular design patterns and their necessities.

Ans.: -

Façade Pattern:

Problem: How should the services be requested from a service package?

Context in which the problem occurs:

Through out the analysis and design process, a glossary is continuously and
consciously prepared. A glossary is a dictionary of terms which can help in
understanding the various terms (or concepts) used in the model. The terms
listed in the glossary are essentially concept names. The glossary or model
dictionary lists and defines all the terms that require explanation in order to
improve communication and to reduce the risk of misunderstanding. Maintaining
the glossary is an ongoing activity through out the project as shown in the fig.
8.13.

Controller objects: The controller objects coordinate the activities of a set of
entity objects and interface with the boundar

usually result from clever factoring of the problem description into independent
and intuitively correct elements.

Example: Tic-tac-toe

Let us identify the entity objects of the following Tic-tac-toe software:

Tic-tac-toe is a computer game in which a human player and the computer make
alternative moves on a 3 X 3 square. A move consists of marking a previously
unmarked square. A player who first places

Ans.: - False.

Explanation: - A façade pattern tells how should the services be
requested from a service package? On the other hand, model view
separation model tells the way that non-GUI classes should communicate
with the GUI classes.

2. The use cases should be tightly tied to the GUI.

Ans.: - False.

Explanation: - The use cases should not be too tightly tied to the GUI.
For example, the use cases should not make any reference to the type of
the GUI element appearing on the screen, e.g. radioButton, pushButton,
etc. This is necessary because, the type of the user interface component
used may change frequently. However, the functionalities do not change
so often.

3. The responsibilities assigned to a controller object are closely
related to the realization of a specific use case.

Ans.: -

Explanation: - CRC (Class-Responsibility-Collaborator) cards are index
cards that are prepared oe(epar)- each clCo

Module
9

User Interface Design

Version 2 CSE IIT, Kharagpur

Lesson
20

which can record the frequency and types of user error and later display
the statistics of various kinds of errors committed by different users.

Moreover, errors can be prevented by asking the users to confirm

any potentially destructive actions specified by them, for ex

Guidance Messages. The guidance messages should be carefully
designed to prompt the user about the next actions he might purse,

Fig 9.2. An example of mode-based interface

Fig 9.2 shows the interface of a word processing program. The
top-level menu provides the user with a gamut of operations like file
open, close, save, etc. When the user chooses the open option,

Module
9

User Interface Design

Version 2 CSE IIT, Kharagpur

Lesson
21

Types of User Interfaces

interface is based on recognition of the command names, rather than
recollection. Further, in a menu-based interface the typing effort is minimal
as most interactions are carried out through menu selections using a

Characteristics of command language-based interface
Characteristics of command language-based interface have been discussed
earlier.

Iconic interface

Direct manipulation interfaces present the interface to the user in the form of
visual models (i.e. icons or objects). For this reason, direct manipulation
interfaces are sometimes called iconic interfaces. In this type of interface, the
user issues commands by performing actions on the visual representations of the
objects, e.g. pull an icon representing a file into an icon representing a trash box,
for deleting the file.

Fig 9.5. Example of an iconic interface

Fig 9.5 shows an iconic interface. Here, the user is presented with a set of icons
at the top of the frame for performing various activities. On clicking on any of the

Lesson
22

Component-Based GUI
Development

Version 2 CSE IIT, Kharagpur

the application and the window manager invoke services of the window
manager.

action related to a push button occurs immediately when you click a push
button unless it contains an ellipsi

X-server. The X server runs on the hardware to which the display
and keyboard attached. The X server performs low-level graphics,
manages window, and user input functions. The X server controls
accesses to a bit-mapped graphics display resource and manages
it.

X-protocol. The X protocol defines the format of the requests
between client applications and display servers over the network.
The X protocol is designed to be independent of hardware,
operating systems, underlying network protocol, and the
programming language used.

X-library (Xlib). The Xlib provides a set of about 300 utility
routines for applications to call. These routines convert procedure
calls into requests that are transmitted to the server. Xlib provides
low level primitives for developing an user interface, such as
displaying a window, drawing characteristics and graphics on the
window, waiting for specific events, etc.

Selecting a metaphor

The first place one should look for while trying to identify the candidate
metaphors is the set of parallels to objects, tasks, and terminologies of the use

Match between the system and the real world. The system should
speak the user’s language words, phrases, and concepts familiar to that

The following questions have been designed to test the
identified objectives for this module:

1. List five desirable characteristics that a good user interface should
possess.

2. What is the difference between user guidance and on-line help system in

the user interface of a software system?

3. Discuss the differenlrlh0.000psuich on-line help can be provided to a user

suile he is executing the software.

4. What is the difference between a mode-based interface and a modeless

interface?

5.

15. What are the advantages of using a Window Management System
(WMS) for a GUI design? Name some commercially available Window
Management Systems.

3. The term “iconic interface” is applicable to
Ƒ command language-based interface
Ƒ menu-based interface
Ƒ direct manipulation interface
Ƒ none of the above

Lesson
23

Code Review

Specific Instructional Objectives
At the end of this lesson the student would be able to:

Contents of the headers preced

• Mismatches between actual and formal parameter in procedure calls.

• Use of incorrect logical operators or incorrect precedence among
operators.

• Improper modification of loop variables.

•

• Statistical testing of the system:

suggest that out of all types of internal documentation meaningful variable names
is most useful in understanding the code. This is of course in contrast to the
common expectation that code comment

sogc3perMCID duct. Thus testingCID vides aCIDactical way of reducingCdefects in aC i t s p r e v i o u s I h a s e , C w h e r e a s v a l i d a t i o n isCthe ID cess of determirequirements specification. Thus while verification isCc

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Differentiate between testing in the large and testing in the small.
•

1. If the input data values to a system can be specifie

probably the simplest condition testing strategy where only the compound
conditions appearing in the different branch statements are made to assume the
true and false values. Thus, condition testi

Fig. 10.3: CFG for (a) sequence, (b) selection, and (c) iteration type of
constructs

Version 2 CSE IIT, Kharagpur

planar, i.e. however you draw the graph, two or more edges intersect?

Mutation testing
In mutation testing, the softwar

Lesson
26

Debugging, Integration
and System Tes62.0i/C.1 Tf
48 .7 1 Tf
0 T16.Tf
 13.96.Tf
 13.98 521275999.74001 Tm
()Tj
ET
EMC
/P <<</MCID 1 >>BDC 1BT
/TT0 1 Tf6.Tf
 13.96.Tf
89.98 8 9 nct 199.7401 Tm
()Tj
ArtifactT
EMAttached [/Bottom]/Type /PaTm
g, Int/BBox [9 Tw5.996Tf
4.973 64.6441]</MCID 9OC MC 0 MCID 8>BDC
0.52
BT
/TT0 1 Tfc -TT0 1 Tf
01.Tf
 132 321.2 0 0.56.8 162.Vers Int2 CSE IIT, Kharagpur7401 TT0 1 Tf
0-62.69n

Specific Instructional Objectives
At the end of this lesson the student would be able to:

¶ Explain why debugging is needed.
¶

 Large software systems normally require several levels of subsystem
testing; lower-level subsystems are succe

Regression Testing
This type of testing is required when the system being tested is an upgradation of
an already existing system to fix some bugs or enhance functionality,
performance, etc. Regression testing is t

 Error seeding, as the name implies, seeds the code with some known
errors. In other words, some artificial errors are introduced into the program
artificially. The number of these seeded e

3. What is the difference between coding standards and coding guidelines?
Why are these considered as impor

24. Which is strongest structural testing technique among statement
coverage-based testing, branch coverage-based testing, and condition
coverage-based testing? Why?

25. Discuss how does control flow graph (CFG) of a problem help in
understanding of path coverage based testing strategy.

26. Draw the control flow graph for the following function named find-
maximum. From the control flow

4. An integration testing approach, where all the modules making up a system

 Mark the following as either True or False. Justify your
answer.

1. Coding standards are synonyms for coding guidelines.
2. During code inspection, you detect errors whereas during code testing

you detect failures.
3. Out of all types of internal document

Module
11

Software Project
Planning

Version 2 CSE IIT, Kharagpur

Lesson
27

Project Planning and
Project Estimation

Techniques

Specific Instructional Objectives

controlling the progress of the project, customer interaction, managerial
presentations, and team building are largely acquired through experience. None
the less, the importance of sound k

1. Introduction

(a) Objectives
(b) Major Functions
(c) Performance Issues
(d) Management and Technical Constraints

2. Project Estimates

(a) Historical Data Used
(b) Estimation Techniques Used
(c) Effort, Resource, Cost, and Project Duration Estimates

3. Schedule

(a) Work Breakdown Structure
(b) Task Network Representation
(c) Gantt Chart Representation
(d) PERT Chart Representation

4. Project Resources

(d) Validation and Verification

 The conceptual idea behind the functi

For example, while entering the data concerning an employee to an employee
pay roll software; the data items name, age, sex, address, phone number, etc.

• A good problem size measure should consider the overall complexity

of the problem and the effort needed to solve it. That is, it should
consider the local effort needed to specify, design, code, test, etc. and
not just the coding effort. LOC, how

Feature point metric

Potential Minimum Volume
The potential minimum volume V* is

Example:

Let us consider the following C program:

main()

Module
11

Software Project
Planning

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives

some insight into the basic COCOMO model can be obtained by plotting the
estima291haracteri(escs for different sod)Tj
151.15 Tw8.27365 0 T[(ftw)7(are sizes. Fig. 11.4 shows aby pl ofMO)]T
-0.0301 Tc 091923 Tww8.27365 -1.15 Td
(estima29effort versus product size. Fromd)Tj
0.0001 Tc 092815 Tw9.6465 0 Td fig. 11.4, weel caobserveng atng the

Fig. 11.5: Development time versus size

From the effort estimation, the project cost can be obtained by multiplying the
required effort by the manpower cost per month. But, implicit in this project cost
computation is the assumption that the entire project cost is incurred on account
of the manpower cost alone. In addition to manpower cost, a project would incur
costs due to hardware and software required for the project and the company
overheads for administration, office space, etc.

 It is important to note that the effort and the duration estimations obtained
us59 Tw 12OCOMOr mdel air

 Cost required to develop the product = 14 х 15,000
 = Rs. 210,000/-

Intermediate COCOMO model

Module
11

Software Project
Planning

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Identify why careful planning of st

 After the project manager has broken down the tasks and created the
work breakdown structure, he has to find the dependency among the activities.
Dependency among the different activities determines the order in which the
different activities would be carried out. If an activity A requires the results of
another activity B, then activity A must be scheduled after activity B. In general,
the task dependencies define a partial ordering among tasks, i.e. each tasks may
precede a subset of other tasks, but some tasks might not have any precedence
ordering defined between them (called concurrent task). The dependency among

Integrate and test 165 285 165 285 0

PERT chart

Mark all options which are true.

Compilers, linkers, etc. can be considered as

(a) Project Organization

 In the project format, a set of engineers is assigned to the project at the
start of the project and they remain with the project

member takes on the role of the designer, coder, tester, etc during the course of
the project. On the other hand, considering the present skill shortage, it would be
very difficult for the functional organizations to fill in slots for some roles such as

The chief programmer team is probably t

Mixed Control Team Organization
The mixed team organization, as the name implies, draws upon the ideas from

democratic team to think that the desi

Lesson
31

Risk Management and
Software Configuration

Management

Version 2 CSE IIT, Kharagpur

For example, one version of a mathematical computation package might
run on Unix-based machines, another on Microsoft Windows and so on. As a
software is released and used by the customer, errors are discovered that need

base line gets formed instantly. This establishes a baseline for others to use and
depend on. Also, configuration may be frozen periodically. Freezing a
configuration may involve archiving everything needed to rebuild it. (Archiving
means copying to a safe place such as a magnetic tape).

System accounting and maintain

It can be shown how the changes to any object that is under configuration control
can be achieved. The engineer needing to change a module first obtains a
private copy of the module through a reserve operation. Then, he carries out all
necessary changes on this private copy. However, restoring the changed module
to the system configuration requires the permission of a change control board
(CCB). The CCB is usually constituted from among the development team
members. For every change that needs to

The change control facilities provided by SCCS and RCS include the
ability to incorporate restrictions on the set of individuals who can create new
versions, and facilities for checking components in and out (i.e. reserve and
restore operations). Individual developers check out components and modify
them. After they have made all necessary changes to a module and after the

Ƒ chief programmer team structure
Ƒ democratic team structure

Ƒ minor enhancements to the functionality, usability etc.
Ƒ significant change in functionality, technology, or the hardware the

software runs on
Ƒ all of the above

11. If configuration management is not during a software development effort

Module
13

Software Reliability and
Quality Management

Version 2 CSE IIT, Kharagpur

60% product defects from the least used parts of a system would typically lead to
only 3% improvement to the product reliability. It is clear that the quantity by
which the overall reliability of a program improves due to the correction of a
single error depends on how frequently is

 The change of failure rate over the product lifetime for a typical hardware
and a software product are sketched in fig. 13.1. For hardware products, it can
be observed that failure rate is high initially but decreases as the faulty
components are identified and removed. The system then enters its useful life.
After some time (called product life time) the components wear out, and the
failure rate increases. This gives the pl

Reliability metrics
The reliability requirements for different categories of software products may be
different. For this reason, it is necessary that the level of reliability required for a
software product should be specified in the SRS (software requirements
specification) document. In order to be able to do this, some metrics are needed

• Availability. Availability of a system is a measure of how likely shall
the system be available for use over a given period of time. This metric
not only considers the number of failures occurring during a time
interval, but also takes into account the repair time (down time) of a
system when a failure occurs. This metric is important for systems
such as telecommunication systems,

Module
13

Software Reliability and
Quality Management

Version 2 CSE IIT, Kharagpur

• Maintainability: A software product is maintainable, if errors can be
easily corrected as and when they show up, new functions can be easily
added to the product, and the functionalities of the product can be easily
modified, etc.

TQM goes a step further than quality assurance and aims at continuous process
improvement. TQM goes beyond documenting processes to optimizing them
through redesign. A term related to TQM is Business Process Reengineering
(BPR). BPR aims at reengineering t

Module
13

Software Reliability and
Quality Management

Version 2 CSE IIT, Kharagpur

Lesson
34

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• State what is meant by ISO 9000 certification.
• Identify the different industries to which the different types of ISO 9000

quality standards can be applied.
• Differentiate between the characteristics of software products and other

type of products that make managing a software development effort
difficult.

• Identify the reasons why obtaining ISO 9000 certification is beneficial to a
software development organization.

• Explain the main requirements that a software development organization
must satisfy for getting ISO 9001 certification.

• Identify the salient features of ISO 9001 certification.
• Identify the shortcomings of ISO 9000 certification.

ISO 9000 certification

from external sources and are involved in only manufacturing those products.

Summary of ISO 9001 certification

•

Module
13

Software Reliability and
Quality Management

Version 2 CSE IIT, Kharagpur

Lesson
35

SEI CMM

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Identify the different levels of SEI Capability Maturity Model.
• Explain the key process areas of a software organization provided by SEI

CMM model.
• Differentiate between ISO 9000 certification and SEI CMM.
• Explain the type of systems to which the SEI CMM model of quality

management is applicable.
• Explain what personal software process is.
• Explain what six sigma is.

SEI Capability Maturity Model
SEI Capability Maturity Model (SEI CMM) hellp
BT
/e955.26 ste imtionewhichlity

Key process areas (KPA) of a software organization

• SEI CMM was developed specifically for software industry and therefore
addresses many issues which are specific to software industry alone.

•

Fig. 13.7: Levels of PSP

Six sigma
The purpose of Six Sigma is to improve processes to do things better, faster, and
at lower cost. It can be used to improve every facet of business, from production,
to human resources, to order entry, to technical support. Six Sigma can be used
for any activity that is concerned with cost, timeliness, and quality of results.
Therefore, it is applicable to virtually every industry.

 Six Sigma at many organizations simply

sub-methodologies: DMAIC and DMADV.

24. What are the shortcomings of ISO 9000 certification process?

25.

Mark all options which are true.

1.

Ƒ thorough product testing
Ƒ if an organization’s processes are good and are followed rigorously then
the products are bound to be of good quality
Ƒ collection of process metrics

12. Continuous process improvement is achieved in which level of SEI Capability
Maturity Model?

Ƒ

8.

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Explain the necessity of software maintenance.
• Identify the types of software maintenance.
• Identify the disadvantages associated with software maintenance.
• Explain what is meant by software reverse engineering.
• What are legacy software products

the system according to customer demands, or to enhance the
performance of the system.

nested conditionals in the program can be replaced by simpler conditional
statements or whenever appropriate by case statements.

Fig. 14.1:

the documents. But more elaborate acti

rework is no more than 15% (as shown in fig. 14.5). Besides the amount of
rework, several other factors might affect the decision regarding using process
model 1 over process model 2:

• Reengineering might be preferable for products which exhibit a high
failure rate.

• Reengineering might also be preferable for legacy products having

F) . B e s 4
 E M C
 f
 - 0 . 0 0 0 6 T c 0 . 2 0 1 4 T w - 2 2 7 9 0 4 . 6 1 r a b l e f M a i n t e n a n c e m o d e l 2 :

where, KLOCadded is the total kilo lines of source code added during

maintenance. KLOC

Mark all options which are true.

1. Software products need maintenance to

Ƒ correct errors
Ƒ enhance features
Ƒ port to new platforms

 Ƒ overcome wear and tear caused by use

2. Software products need adaptive maintenance for which of the following

2.

�‘

Module

Lesson

Specific Instructional Objectives

• Use of CASE tools leads to considerable improvements to quality. This is
mainly due to the facts that one can effortlessly iterate through the
different phases of software development and the chances of human error

• The CASE tool should support generation of module skeletons or

Module

Lesson
38

Specific Instructional Objectives

Ƒ to help produce better quality software
Ƒ all of the above

3. Which of the following features are related to a prototyping CASE tool?

Ƒ to define user interaction
Ƒ to define the control flow of the system
Ƒ to incorporate some processing logic
Ƒ all of the above

4. Which of the following supports should we expect from a CASE tool during
the code generation phase of a software development project?

Ƒ generation of module skeletons or templates in one or more popular

lnguages?

Lesson

the details of the

Component understanding. The programmers need a precise and sufficiently
complete understanding of what the component does to be able to decide
whether they can reuse the component. To facilitate understanding, the

Evolution of a reuse domain. The ultimate result of domain analysis is

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Explain a scheme by which software reusable components can be

Searching
The domain repository may contain thousands of reuse items.

Advantages of application generators
Application generators have significant advantages over simple parameterized
programs. The biggest of these is that the application generators can express the
variant information in an appropriate language rather than being restricted to
function parameters, named constants, or tables. The other advantages include
fewer errors, easier to maintain, substantially reduced development effort, and
the fact that one need not bother about the implementation details.

Shortcomings of application generator.

it is necessary to support some
new concepts or features. Tw 10.101 0 generators a0Tjless successful with the
development of applications with close interaction with hardwan gene such as real-
time systems.

Re-use at organiz101 0 level

equires adop01 0 of the following steps:

•

• Can we parameterize a non-reusable component so that it becomes
reusable?

Refining products for greater reusability. For a product to be reusable, it must
be relatively easy to adapt it to different contexts. Machine dependency must be
abstracted out or localized using data encapsulation techniques. The following
refinements may be carried out:

3. Why is reuse of software components much more difficult than hardware

components?

4. Do you agree with the statement: “code” is the most important reuse
artifact that can be used during software development.

5. Identify the reasons why reuse of mathematical software is so successful.

2. Which of the following kinds of

Module
17

Client-Server Software
Development

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Explain what Common Object Request Broker Architecture (CORBA) is.
• Explain CORBA reference model.
• Explain CORBA architecture.
• Identify the functions of Object Request Broker (ORB).
• Identify the commercial ORBs.
•

Steps to develop application in CORBA

Service can be invoked by a client through either stub or Dynamic Invocation
Interface (DII). Before developing a client-server application, the problem is split
into two parts: client part and the server part. Next the exact client and server
interfaces are determined.

• To specify an interface, IDL (Interface Definition Language) is used.

IDL is very similar to C++ and Java

Service invocation by client through stub is suitable when the interface between

Inter-ORB communication
How does ORB do in service invocation when different components exist in
different LANS? The answer is Inter-ORB Communication. CORBA 1.0 did not
permit Inter-ORB Communication. CORBA 2.0 removes the shortcoming.
CORBA 2.0 defines general interoperability standard.

2. Which of the following functions are performed by middleware?

� it can identify the server from either its id or its service type
� it knows client protocols and server protocols
� it can deliver client-request to the server and server-response to the
client
� all of the above

� we do not need to know the interface between the client and the server
part
� none of the above

8. What are the properties General Inter-ORB Protocol (GIOP) hold?

� scalable
� easy to implement
� can be used any connection-oriented bytestream transport
� all of the above

9. If some applications run entirely on Microsoft platforms then it will be

better to use

� CORBA
� COM/DCOM
� all of the above

7.

Module
17

Client-Server Software
Development

Version 2 CSE IIT, Kharagpur

Lesson
41

Basic Ideas on Client-

Serve177ftware()Tj
-0806 -1.173 Td
Developmien and 1
Serve11

Specific Instructional Objectives

address. So he sent a wireless message (request) to the nearest “address
server” by his handheld computer to enquire his friend’s address. The message
first came to the base station. The base station forwarded that message through
landline to local area network where the server is located. After some processing,
LAN sent back that friend’s address (service) to the man.

Advantages of client-server software

The client-server software architecture is a versatile, message-based and
modular infrastructure that is intended to improve usability, flexibility,
interoperability and scalability as compar

• Computers have become small, decentralized and cheap

• Networking has become affordable, reliable, and efficient.

• Client-server systems divide up the work of computing among many
separate machines. Thus client-server solutions are modular and loosely
coupled. So they are easy to develop and maintain.

Advantages of client-server software development
There are many advantages of client-server software products as compared to
monolithic ones. These advantages are:

• Simplicity and modularity –

 • •

• Application Service Providers (ASPs) – There are many application
software products which are very expensive. Thus it makes prohibitively

vendors, they may not be compatible with respect to data types, language,
etc.

• Inconsistency – Replication of servers is a problem as it can make data
inconsistent.

Host-slave computing vs. client-server computing
An example of a host-slave computing is a Railway-reservation system. The

Module
17

Client-Server Software
Development

Version 2 CSE IIT, Kharagpur

Lesson
41

Basic Ideas on Client-

Serve177ftware()Tj
-0806 -1.173 Td
Developmien and 1
Serve11

Specific Instructional Objectives

address. So he sent a wireless message (request) to the nearest “address
server” by his handheld computer to enquire his friend’s address. The message
first came to the base station. The base station forwarded that message through
landline to local area network where the server is located. After some processing,
LAN sent back that friend’s address (service) to the man.

Advantages of client-server software

The client-server software architecture is a versatile, message-based and
modular infrastructure that is intended to improve usability, flexibility,
interoperability and scalability as compar

• Computers have become small, decentralized and cheap

• Networking has become affordable, reliable, and efficient.

• Client-server systems divide up the work of computing among many
separate machines. Thus client-server solutions are modular and loosely
coupled. So they are easy to develop and maintain.

Advantages of client-server software development
There are many advantages of client-server software products as compared to
monolithic ones. These advantages are:

• Simplicity and modularity –

 • •

• Application Service Providers (ASPs) – There are many application
software products which are very expensive. Thus it makes prohibitively

vendors, they may not be compatible with respect to data types, language,
etc.

• Inconsistency – Replication of servers is a problem as it can make data
inconsistent.

Host-slave computing vs. client-server computing
An example of a host-slave computing is a Railway-reservation system. The

Module
17

Client-Server Software
Development

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Explain what Common Object Request Broker Architecture (CORBA) is.
• Explain CORBA reference model.
• Explain CORBA architecture.
• Identify the functions of Object Request Broker (ORB).
• Identify the commercial ORBs.
•

Steps to develop application in CORBA

Service can be invoked by a client through either stub or Dynamic Invocation
Interface (DII). Before developing a client-server application, the problem is split
into two parts: client part and the server part. Next the exact client and server
interfaces are determined.

• To specify an interface, IDL (Interface Definition Language) is used.

IDL is very similar to C++ and Java

Service invocation by client through stub is suitable when the interface between

Inter-ORB communication
How does ORB do in service invocation when different components exist in
different LANS? The answer is Inter-ORB Communication. CORBA 1.0 did not
permit Inter-ORB Communication. CORBA 2.0 removes the shortcoming.
CORBA 2.0 defines general interoperability standard.

2. Which of the following functions are performed by middleware?

� it can identify the server from either its id or its service type
� it knows client protocols and server protocols
� it can deliver client-request to the server and server-response to the
client
� all of the above

� we do not need to know the interface between the client and the server
part
� none of the above

8. What are the properties General Inter-ORB Protocol (GIOP) hold?

� scalable
� easy to implement
� can be used any connection-oriented bytestream transport
� all of the above

9. If some applications run entirely on Microsoft platforms then it will be

better to use

� CORBA
� COM/DCOM
� all of the above

7.

